Chapter 1 Quasi - Monte Carlo Sampling
نویسنده
چکیده
In Monte Carlo (MC) sampling the sample averages of random quantities are used to estimate the corresponding expectations. The justification is through the law of large numbers. In quasi-Monte Carlo (QMC) sampling we are able to get a law of large numbers with deterministic inputs instead of random ones. Naturally we seek deterministic inputs that make the answer converge as quickly as possible. In particular it is common for QMC to produce much more accurate answers than MC does. Keller [19] was an early proponent of QMC methods for computer graphics.
منابع مشابه
Multidimensional variation for quasi-Monte Carlo
This paper collects together some properties of multidimensional definitions of the total variation of a real valued function. The subject has been studied for a long time. Many of the results presented here date back at least to the early 1900s. The main reason for revisiting this topic is that there has been much recent work in theory and applications of Quasi-Monte Carlo (QMC) sampling. For ...
متن کاملExploring multi-dimensional spaces: a Comparison of Latin Hypercube and Quasi Monte Carlo Sampling Techniques
Three sampling methods are compared for efficiency on a number of test problems of various complexity for which analytic quadratures are available. The methods compared are Monte Carlo with pseudo-random numbers, Latin Hypercube Sampling, and Quasi Monte Carlo with sampling based on Sobol’ sequences. Generally results show superior performance of the Quasi Monte Carlo approach based on Sobol’ s...
متن کاملLocal Quasi-Monte Carlo Exploration
In physically-based image synthesis, the path space of light transport paths is usually explored by stochastic sampling. The two main families of algorithms are Monte Carlo/quasi-Monte Carlo sampling and Markov chain Monte Carlo. While the former is known for good uniform discovery of important regions, the latter facilitates efficient exploration of local effects. We introduce a hybrid samplin...
متن کاملQuasi-Monte Carlo sampling to improve the efficiency of Monte Carlo EM
In this paper we investigate an efficient implementation of the Monte Carlo EM algorithm based on Quasi-Monte Carlo sampling. The Monte Carlo EM algorithm is a stochastic version of the deterministic EM (Expectation-Maximization) algorithm in which an intractable E-step is replaced by a Monte Carlo approximation. Quasi-Monte Carlo methods produce deterministic sequences of points that can signi...
متن کاملQuasi-monte Carlo Strategies for Stochastic Optimization
In this paper we discuss the issue of solving stochastic optimization problems using sampling methods. Numerical results have shown that using variance reduction techniques from statistics can result in significant improvements over Monte Carlo sampling in terms of the number of samples needed for convergence of the optimal objective value and optimal solution to a stochastic optimization probl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003